Gamma

Ususal parameterisation

Probability distribution function

The Gamma distribution is defined on $\left[0, \infty\right[$. There are two usual parameterisation:

where $\Gamma$ is the Gamma function[wiki], $\psi$ is the digamma function[wiki] and $\psi_1$ is the trigamma function[wiki].

The distribution has a mode only if $\alpha \geqslant 1$:

PDF of the Gamma distribution with different parameters
Figure. Probability distribution function of the Gamma distribution with varying parameters.

Maximum likelihood estimators

Let $\mathbf{x} = (x_n)$ a set of observed realisations from a Gamma distribution.

$\hat{\beta} \mid \mathbf{x}, \alpha$ $= \frac{\alpha}{\overline{x}}$
$\hat{\alpha} \mid \mathbf{x}$ solution of: $\ln \hat{\alpha} - \psi(\hat{\alpha}) = \ln \overline{x} - \overline{\ln x}$
$\hat{\beta} \mid \mathbf{x}$ $= \hat{\beta} \mid \mathbf{x}, \hat{\alpha} = \frac{\hat{\alpha}}{\overline{x}}$

There is no closed form solution for $\hat{\alpha}$, but an approximate solution can be found by numerical optimisation.

Conjugate prior

We list here the distributions that can be used as conjugate prior for the parameters of an univariate Normal distribution:

$\beta \mid \alpha$ Gamma $\mathcal{G}_\alpha$

Update equations can be found in the Conjugate prior article.

Kullback-Leibler divergence

The KL-divergence can be written as

where $H$ is the cross-entropy. We have

Consequently

Specialisation    
Exponential $\mathrm{Exp}(\lambda) = \mathcal{G}(1, \lambda)$  
Chi-squared $\chi^2(\nu) = \mathcal{G}_\mathcal{N}(1, \nu) = \mathcal{G}\left(\frac{\nu}{2}, \frac{1}{2}\right)$  
Generalisation    
Generalised Gamma $\mathcal{G}(\alpha, \beta) = \mathcal{G}^{(1)}(\alpha, \beta)$ q = 1 
Wishart $\mathcal{G}_\mathcal{N}(\lambda, n) = \mathcal{W}_1(\lambda, n)$ K = 1
Generalised Integer Gamma    
Generalised Inverse-Gaussian    
Power    
Inverse-Gamma $x \sim \mathcal{G}(\alpha, \beta) \Rightarrow \frac{1}{x} \sim \mathrm{Inv-}\mathcal{G}\left(\alpha, \frac{1}{\beta}\right)$  
Generalised Gamma $x \sim \mathcal{G}(\alpha, \beta) \Rightarrow x^q \sim \mathcal{G}^{\left(1/q\right)}\left(\frac{\alpha}{q}, \beta^q\right)$ q > 0

Univariate Normal precision conjugate” parameterisation

When the Gamma distribution is used as a conjugate prior for the precision parameter of a univariate Normal distribution, it is easier to parameterise it in terms of its expected value, $\lambda_0$, and degrees of freedom, $n_0$:

The distribution has a mode only if $n_0 \geqslant 2$:

PDF of the Gamma distribution with different degrees of freedom (1, 10, 100)
Figure. Probability distribution function of the Gamma distribution with expected precision $\lambda_0 = 10$ and three different degrees of freedom: $n_0 = 1, 10, 100$.

KL-divergence

Parameter equivalence

$\alpha$ $\frac{n}{2}$
$\beta$ $\frac{n}{2\lambda}$
$n$ $2\alpha$
$\lambda$ $\frac{\alpha}{\beta}$

“Multivariate Normal precision scale conjugate” parameterisation

When the Gamma distribution is used as a conjugate prior for the scale of the precision matrix of a multivariate Normal distribution, it is easier to parameterise it in terms of its expected value, $\lambda_0$, and degrees of freedom, $n_0$:

Note that the “Univariate Normal precision conjugate” is a spacial case of this distribution with $K = 1$.

The distribution has a mode only if $n_0 \geqslant \frac{2}{K}$:

PDF of the Gamma distribution with different degrees of freedom (1, 10, 100)
Figure. Probability distribution function of the Gamma distribution with dimension $K = 5$, expected precision magnitude $\lambda_0 = 10$ and three different degrees of freedom: $n_0 = 1, 10, 100$.

KL-divergence

Parameter equivalence

$\alpha$ $\frac{nK}{2}$
$\beta$ $\frac{nK}{2\lambda}$
$n$ $\frac{2\alpha}{K}$
$\lambda$ $\frac{\alpha}{\beta}$

“Gamma rate” parameterisation

When the Gamma distribution is used as a conjugate prior for the rate parameter of another Gamma distribution, it is easier to parameterise it in terms of its expected value, $\beta_0$, and degrees of freedom, $n_0$:

The distribution has a mode only if $n_0 \geqslant \frac{1}{\alpha}$:

Parameter equivalence

$\alpha$ $n_0\hat{\alpha}$
$\beta$ $\frac{n_0\hat{\alpha}}{\beta_0}$
$n_0$ $\frac{\alpha}{\hat{\alpha}}$
$\beta_0$ $\frac{\alpha}{\beta}$

Created by Yaël Balbastre on 9 April 2018. Last edited on 10 April 2018.